Macromodel for the 741

1. AC Linear Macromodel of the 741 operational amplifier



(Ref: Macromodeling with Spice, by J.A. Connelly/P. Choi)
    * Subcircuit for 741 opamp
    .subckt opamp741 1 2 3
    * +in (=1) -in (=2) out (=3)
    rin 1 2 2meg
    rout 6 3 75
    e 4 0 1 2 100k
    rbw 4 5 0.5meg
    cbw 5 0 31.85nf
    eout 6 0 5 0 1
    .ends opamp741
This subcircuit models the 741 opamp with resistors, capacitors and dependent voltage sources. The specs of the opams are as follows:
    Input resistance=2 MegaOhm,
    Output resistance=75 Ohm,
    Open loop gain=1E5 (100 dB)
    Gain-bandwith product of 1MHz or a bandwidth of 10 Hz.
This is a linear model and hence does not model slewing of the operational amplifier.





2. Diode Model: 1N4148


    .model D1N4148 D (IS=0.1PA, RS=16 CJO=2PF TT=12N BV=100 IBV=0.1PA)



3. NPN Transistors

    1N2222A NPN Transistor
    .model Q2N2222A NPN (IS=14.34F  XTI=3  EG=1.11  VAF= 74.03  BF=255.9  
    +NE=1.307  ISE=14.34F  IKF=.2847  XTB=1.5  BR=6.092  NC=2  ISC=0  IKR=0  
    +RC=1  CJC=7.306P  MJC=.3416  VJC=.75  FC=.5  CJE=22.01P  MJE=.377  
    +VJE=.75  TR=46.91N  TF=411.1P  ITF=.6  VTF=1.7  XTF=3  RB=10)
    2N696 NPN Transistor
    .model Q2N696 NPN (IS=14.34F  XTI=3  EG=1.11  VAF= 74.03  BF=65.62  
    +NE=1.208  ISE=19.48F  IKF=.2385  XTB=1.5  BR=9.715  NC=2  ISC=0  IKR=0  
    +RC=1  CJC=9.393P MJC=.3416  VJC=.75  FC=.5  CJE=22.01P  MJE=.377  
    +VJE=.75  TR=58.98N  TF=408.8P  ITF=.6  VTF=1.7  XTF=3  RB = 10)
    Note: A continuation sign + has been added at the beginning of a new line in the model statements.



4. MOSIS SPICE model parameters

1.2 micron CMOS model (Level 3)
For a description of the parameters see SPICE MODEL PARAMETERS OF MOSFETS
Typical parameters

    NMOS
    .MODEL CMOSN NMOS LEVEL=3 PHI=0.600000 TOX=2.1200E-08 XJ=0.200000U   
    +TPG=1 VTO=0.7860 DELTA=6.9670E-01 LD=1.6470E-07 KP=9.6379E-05
    +UO=591.7 THETA=8.1220E-02 RSH=8.5450E+01 GAMMA=0.5863
    +NSUB=2.7470E+16 NFS=1.98E+12 VMAX=1.7330E+05 ETA=4.3680E-02
    +KAPPA=1.3960E-01 CGDO=4.0241E-10 CGSO=4.0241E-10
    +CGBO=3.6144E-10 CJ=3.8541E-04 MJ=1.1854 CJSW=1.3940E-10
    +MJSW=0.125195 PB=0.800000

    PMOS
    .MODEL CMOSP PMOS LEVEL=3 PHI=0.600000 TOX=2.1200E-08 XJ=0.200000U 
    +TPG=-1 VTO=-0.9056 DELTA=1.5200E+00 LD=2.2000E-08 KP=2.9352E-05
    +UO=180.2 THETA=1.2480E-01 RSH=1.0470E+02 GAMMA=0.4863
    +NSUB=1.8900E+16 NFS=3.46E+12 VMAX=3.7320E+05 ETA=1.6410E-01
    +KAPPA=9.6940E+00 CGDO=5.3752E-11 CGSO=5.3752E-11
    +CGBO=3.3650E-10 CJ=4.8447E-04 MJ=0.5027 CJSW=1.6457E-10
    +MJSW=0.217168 PB=0.850000
Note: A continuation sign + has been added at the beginning of a new line in the model statements.
Maximum parameters

    NMOS
    .MODEL CMOSN NMOS LEVEL=3
    PHI=0.600000 TOX=2.1500E-08 XJ=0.200000U +TPG=1 VTO=0.8063
    DELTA=9.4090E-01 LD=1.3540E-07 KP=1.0877E-04 +UO=680.4
    THETA=8.3620E-02 RSH=109.3 GAMMA=0.5487 +NSUB=2.3180E+16 NFS=1.98E+12
    VMAX=1.8700E+05 ETA=5.5740E-02 +KAPPA=5.9210E-02 CGDO=3.2469E-10
    CGSO=3.2469E-10 +CGBO=3.7124E-10 CJ=3.1786E-04 MJ=1.0148
    CJSW=1.3284E-10 +MJSW=0.119521 PB=0.800000 

    PMOS
    .MODEL CMOSP PMOS LEVEL=3 PHI=0.600000
    TOX=2.1500E-08 XJ=0.200000U +TPG=-1VTO=-0.9403 DELTA=8.5790E-01
    LD=1.1650E-09 KP=3.4276E-05 +UO=214.4 THETA=1.4010E-01 RSH=122.2
    GAMMA=0.5615 +NSUB=2.4270E+16 NFS=3.46E+12 VMAX=3.9310E+05
    ETA=1.5670E-01 +KAPPA=9.9990E+00 CGDO=2.7937E-12 CGSO=2.7937E-12
    +CGBO=3.5981E-10 CJ=4.5952E-04 MJ=0.4845 CJSW=2.7917E-10
    +MJSW=0.365250 PB=0.850000 
Minimum parameters

    NMOS
    .MODEL CMOSN NMOS LEVEL=3
    PHI=0.600000 TOX=2.0500E-08 XJ=0.200000U +TPG=1 VTO=0.8147
    DELTA=3.0170E-05 LD=1.7540E-07 KP=8.9765E-05 +UO=532.9
    THETA=9.0470E-02 RSH=1.5870E+01 GAMMA=0.6654 +NSUB=3.7840E+16
    NFS=5.5000E+12 VMAX=1.7140E+05 ETA=6.4550E-02 +KAPPA=5.6190E-02
    CGDO=4.4318E-10 CGSO=4.4318E-10 +CGBO=3.2044E-10 CJ=3.1786E-04
    MJ=1.0148 CJSW=1.3284E-10 +MJSW=0.119521 PB=0.800000 

    PMOS
    .MODEL CMOSP PMOS LEVEL=3 PHI=0.600000
    TOX=2.0500E-08 XJ=0.200000U +TPG=-1 VTO=-0.9189 DELTA=2.3190E+00
    LD=1.0440E-08 KP=3.3521E-05 + UO=199.0 THETA=1.7940E-01 RSH=25.0000
    GAMMA=0.4124 +NSUB=1.4540E+16 NFS=5.0000E+12 VMAX=5.4640E+05
    ETA=2.1090E-01 + KAPPA=9.3670E+00 CGDO=2.6379E-11 CGSO=2.6379E-11 +
    CGBO=2.8996E-10 CJ=4.6135E-04 MJ=0.4831 CJSW=1.8681E-10 +
    MJSW=0.315030 PB=0.850000 

No comments:

Post a Comment

Labels

PROJECTS 8086 PIN CONFIGURATION 80X86 PROCESSORS TRANSDUCERS 8086 – ARCHITECTURE Hall-Effect Transducers INTEL 8085 OPTICAL MATERIALS BIPOLAR TRANSISTORS INTEL 8255 Optoelectronic Devices Thermistors thevenin's theorem MAXIMUM MODE CONFIGURATION OF 8086 SYSTEM ASSEMBLY LANGUAGE PROGRAMME OF 80X86 PROCESSORS POWER PLANT ENGINEERING PRIME MOVERS 8279 with 8085 MINIMUM MODE CONFIGURATION OF 8086 SYSTEM MISCELLANEOUS DEVICES MODERN ENGINEERING MATERIALS 8085 Processor- Q and A-1 BASIC CONCEPTS OF FLUID MECHANICS OSCILLATORS 8085 Processor- Q and A-2 Features of 8086 PUMPS AND TURBINES 8031/8051 MICROCONTROLLER Chemfet Transducers DIODES FIRST LAW OF THERMODYNAMICS METHOD OF STATEMENTS 8279 with 8086 HIGH VOLTAGE ENGINEERING OVERVOLATGES AND INSULATION COORDINATION Thermocouples 8251A to 8086 ARCHITECTURE OF 8031/8051 Angle-Beam Transducers DATA TRANSFER INSTRUCTIONS IN 8051/8031 INSTRUCTION SET FOR 8051/8031 INTEL 8279 KEYBOARD AND DISPLAY INTERFACES USING 8279 LOGICAL INSTRUCTIONS FOR 8051/8031 Photonic Transducers TECHNOLOGICAL TIPS THREE POINT STARTER 8257 with 8085 ARITHMETIC INSTRUCTIONS IN 8051/8031 LIGHTNING PHENOMENA Photoelectric Detectors Physical Strain Gage Transducers 8259 PROCESSOR APPLICATIONS OF HALL EFFECT BRANCHING INSTRUCTIONS FOR 8051/8031 CPU OF 8031/8051 Capacitive Transducers DECODER Electromagnetic Transducer Hall voltage INTEL 8051 MICROCONTROLLER INTEL 8251A Insulation Resistance Test PINS AND SIGNALS OF 8031/8051 Physical Transducers Resistive Transducer STARTERS Thermocouple Vacuum Gages USART-INTEL 8251A APPLICATIONs OF 8085 MICROPROCESSOR CAPACITANCE Data Transfer Instructions In 8086 Processors EARTH FAULT RELAY ELECTRIC MOTORS ELECTRICAL AND ELECTRONIC INSTRUMENTS ELECTRICAL BREAKDOWN IN GASES FIELD EFFECT TRANSISTOR (FET) INTEL 8257 IONIZATION AND DECAY PROCESSES Inductive Transducers Microprocessor and Microcontroller OVER CURRENT RELAY OVER CURRENT RELAY TESTING METHODS PhotoConductive Detectors PhotoVoltaic Detectors Registers Of 8051/8031 Microcontroller Testing Methods ADC INTERFACE AMPLIFIERS APPLICATIONS OF 8259 EARTH ELECTRODE RESISTANCE MEASUREMENT TESTING METHODS EARTH FAULT RELAY TESTING METHODS Electricity Ferrodynamic Wattmeter Fiber-Optic Transducers IC TESTER IC TESTER part-2 INTERRUPTS Intravascular imaging transducer LIGHTNING ARRESTERS MEASUREMENT SYSTEM Mechanical imaging transducers Mesh Current-2 Millman's Theorem NEGATIVE FEEDBACK Norton's Polarity Test Potentiometric transducers Ratio Test SERIAL DATA COMMUNICATION SFR OF 8051/8031 SOLIDS AND LIQUIDS Speed Control System 8085 Stepper Motor Control System Winding Resistance Test 20 MVA 6-digits 6-digits 7-segment LEDs 7-segment A-to-D A/D ADC ADVANTAGES OF CORONA ALTERNATOR BY POTIER & ASA METHOD ANALOG TO DIGITAL CONVERTER AUXILIARY TRANSFORMER AUXILIARY TRANSFORMER TESTING AUXILIARY TRANSFORMER TESTING METHODS Analog Devices A–D BERNOULLI’S PRINCIPLE BUS BAR BUS BAR TESTING Basic measuring circuits Bernoulli's Equation Bit Manipulation Instruction Buchholz relay test CORONA POWER LOSS CURRENT TRANSFORMER CURRENT TRANSFORMER TESTING Contact resistance test Current to voltage converter DAC INTERFACE DESCRIBE MULTIPLY-EXCITED Digital Storage Oscilloscope Display Driver Circuit E PROMER ELPLUS NT-111 EPROM AND STATIC RAM EXCITED MAGNETIC FIELD Electrical Machines II- Exp NO.1 Energy Meters FACTORS AFFECTING CORONA FLIP FLOPS Fluid Dynamics and Bernoulli's Equation Fluorescence Chemical Transducers Foil Strain Gages HALL EFFECT HIGH VOLTAGE ENGG HV test HYSTERESIS MOTOR Hall co-efficient Hall voltage and Hall Co-efficient High Voltage Insulator Coating Hot-wire anemometer How to Read a Capacitor? IC TESTER part-1 INSTRUMENT TRANSFORMERS Importance of Hall Effect Insulation resistance check Insulator Coating Knee point Test LEDs LEDs Display Driver LEDs Display Driver Circuit LM35 LOGIC CONTROLLER LPT LPT PORT LPT PORT EXPANDER LPT PORT LPT PORT EXTENDER Life Gone? MAGNETIC FIELD MAGNETIC FIELD SYSTEMS METHOD OF STATEMENT FOR TRANSFORMER STABILITY TEST METHODS OF REDUCING CORONA EFFECT MULTIPLY-EXCITED MULTIPLY-EXCITED MAGNETIC FIELD SYSTEMS Mesh Current Mesh Current-1 Moving Iron Instruments Multiplexing Network Theorems Node Voltage Method On-No Load And On Load Condition PLC PORT EXTENDER POTIER & ASA METHOD POWER TRANSFORMER POWER TRANSFORMER TESTING POWER TRANSFORMER TESTING METHODS PROGRAMMABLE LOGIC PROGRAMMABLE LOGIC CONTROLLER Parallel Port EXPANDER Paschen's law Piezoelectric Wave-Propagation Transducers Potential Transformer RADIO INTERFERENCE RECTIFIERS REGULATION OF ALTERNATOR REGULATION OF THREE PHASE ALTERNATOR Read a Capacitor SINGLY-EXCITED SOLIDS AND LIQUIDS Classical gas laws Secondary effects Semiconductor strain gages Speaker Driver Strain Gages Streamer theory Superposition Superposition theorem Swinburne’s Test TMOD TRANSFORMER TESTING METHODS Tape Recorder Three-Phase Wattmeter Transformer Tap Changer Transformer Testing Vector group test Virus Activity Voltage Insulator Coating Voltage To Frequency Converter Voltage to current converter What is analog-to-digital conversion Windows work for Nokia capacitor labels excitation current test magnetic balance voltage to frequency converter wiki electronic frequency converter testing voltage with a multimeter 50 hz voltages voltmeter

Search More Posts

Followers