Likewise when a synchronous machine operates as a motor with a mechanical load
on its shaft, it draws an alternating current which interacts with the main flux to produce a driving torque. The torque remains unidirectional only if the rotor moves one pole-pitch per half-cycle; i.e. it can run only at the synchronous speed. In a balanced three-phase machine, the armature reaction due to the fundamental component of the current is a steady mmf revolving synchronously with the rotor - its constant cross-component producing a constant torque by interaction with the main flux, while its direct-component affects the amount of the main flux. A very simple way of regarding a synchronous motor is illustrated in Fig. 24. The stator, like that of the induction motor produces a magnetic field rotating at synchronous speed. The poles on the rotor (salient-pole is shown in Fig. 24 only for clarity), excited by direct current in their field windings, undergo magnetic attraction by the stator poles, and are dragged round to align themselves and locked up with with the stator poles (of opposite polarity- obviously). On no load the axes of the stator and rotor poles are practically coin- cident. When a retarding torque is applied to the shaft, the rotor tends to fall behind. In doing so the attraction of the stator on the rotor becomes tangential to an extent sufficient to develop a counter torque - however the rotor continues to rotate only at synchronous speed. The angular shift between the stator and rotor magnetic axes represents the torque (or load) angle (as shown later, in the phasor diagram). This angle naturally increases with the mechanical load on the shaft. The maximum possible load is that which retards the rotor so that the tangential attraction is a maximum. (It will be shown later that the maximum possible value for the torque angle is 90 electrical degrees - corresponding to a retardation of the rotor pole by one half of a pole pitch). If the load be increased above this amount, the rotor poles come under the influence of a like pole and the attraction between the stator and rotor poles ceases and the rotor comes to a stop. At this point we say that the synchronous motor pulled out of step. This situation arises much above the rated loads in any practical machine.
It is to be noted that the magnetic field shown in Fig. 24 is only diagrammatic and for better understanding of the action of the synchronous machine - the flux lines may be considered as elastic bands which will be stretched by application of the mechanical load on the shaft. Actually the flux lines will enter or leave the stator and rotor surfaces nearly normally, on account of the high permeability of these members. In a salient-pole machine the torque is developed chiefly on the sides of the poles and on the sides of the teeth in a non-salient-pole machine.
Effect of changes in field excitation on synchronous motor performance:
Intuitively we can expect that increasing the strength of the magnets will increase the magnetic attraction, and thereby cause the rotor magnets to have a closer alignment with the corresponding opposite poles of the rotating magnetic poles of the stator. This will obviously result in a smaller power angle. This fact can also be seen in Eqn. 68. When the shaft load is assumed to be constant, the steady-state value of Ef sin δ must also be constant. An increase in Ef will cause a transient increase in Ef sin δ, and the rotor will accelerate. As the rotor changes its angular
position, δ decreases until Ef sin δ has the same steady-state value as before, at which time the rotor is again operating at synchronous speed, as it should run only at the synchronous speed. This change in angular position of the rotor magnets relative to the poles of rotating magnetic field of the stator occurs in a fraction of a second.
The effect of changes in field excitation on armature current, power angle, and power factor of a synchronous motor operating with a constant shaft load, from a constant voltage, constant frequency supply, is illustrated in Fig. 57. From Eqn. 69, we have for a constant shaft load,
V curves
Curves of armature current vs. field current (or excitation voltage to a different scale) are called V curves, and are shown in Fig. 58 for typical values of synchronous motor loads. The curves are related to the phasor diagram in Fig. 57, and illustrate the effect of the variation of field excitation on armature current and power factor for typical shaft loads. It can be easily noted from these curves that an increase in shaft loads require an increase in field excitation in order to maintain the power factor at unity. The locus of the left most point of the V curves in Fig. 58 represents the stability limit (_δ = −90◦). Any reduction in excitation below the stability limit for a particular load will cause the rotor to pullout of synchronism.
The V curves shown in Fig. 58 can be determined experimentally in the laboratory by varying If at a constant shaft load and noting Ia as If is varied. Alternatively the V curves shown in Fig. 58 can be determined graphically by plotting |Ia|vs.|Ef | from a family of phasor diagrams as shown in Fig. 57, or from the following mathematical expression for the V curves
Eqn. 74 is based on the phasor diagram and the assumption that Ra is negligible. It is to be noted that instability will occur, if the developed torque is less than the shaft load plus friction and windage losses, and the expression under the square root sign will be negative. The family of V curves shown in Fig. 58 represent computer plots of Eqn. 74, by tak- ing the data pertaining to a three-phase 10 hp synchronous motor i.e Vph = 230V and Xs = 1.2/phase.
No comments:
Post a Comment