What Is Alternating Current (AC) ?



Most students of electricity begin their study with what is known as direct current (DC), which is
electricity °owing in a constant direction, and/or possessing a voltage with constant polarity. DC
is the kind of electricity made by a battery (with de¯nite positive and negative terminals), or the
kind of charge generated by rubbing certain types of materials against each other.

As useful and as easy to understand as DC is, it is not the only \kind" of electricity in use. Certain
sources of electricity (most notably, rotary electro-mechanical generators) naturally produce voltages
alternating in polarity, reversing positive and negative over time. Either as a voltage switching
polarity or as a current switching direction back and forth, this \kind" of electricity is known as
Alternating Current (AC): Figure 1.1

Whereas the familiar battery symbol is used as a generic symbol for any DC voltage source, the
circle with the wavy line inside is the generic symbol for any AC voltage source.

One might wonder why anyone would bother with such a thing as AC. It is true that in some
cases AC holds no practical advantage over DC. In applications where electricity is used to dissipate
energy in the form of heat, the polarity or direction of current is irrelevant, so long as there is
enough voltage and current to the load to produce the desired heat (power dissipation). However,
with AC it is possible to build electric generators, motors and power distribution systems that are



Notice how the polarity of the voltage across the wire coils reverses as the opposite poles of the
rotating magnet pass by. Connected to a load, this reversing voltage polarity will create a reversing
current direction in the circuit. The faster the alternator's shaft is turned, the faster the magnet
will spin, resulting in an alternating voltage and current that switches directions more often in a
given amount of time.

While DC generators work on the same general principle of electromagnetic induction, their
construction is not as simple as their AC counterparts. With a DC generator, the coil of wire is
mounted in the shaft where the magnet is on the AC alternator, and electrical connections are
made to this spinning coil via stationary carbon \brushes" contacting copper strips on the rotating
shaft. All this is necessary to switch the coil's changing output polarity to the external circuit so
the external circuit sees a constant polarity: Figure 1.3
problems of spark-producing brush contacts are even greater. An AC generator (alternator) does
not require brushes and commutators to work, and so is immune to these problems experienced by
DC generators.

The bene¯ts of AC over DC with regard to generator design is also re°ected in electric motors.
While DC motors require the use of brushes to make electrical contact with moving coils of wire, AC
motors do not. In fact, AC and DC motor designs are very similar to their generator counterparts
(identical for the sake of this tutorial), the AC motor being dependent upon the reversing magnetic
¯eld produced by alternating current through its stationary coils of wire to rotate the rotating
magnet around on its shaft, and the DC motor being dependent on the brush contacts making and
breaking connections to reverse current through the rotating coil every 1/2 rotation (180 degrees).

So we know that AC generators and AC motors tend to be simpler than DC generators and DC
motors. This relative simplicity translates into greater reliability and lower cost of manufacture.

But what else is AC good for? Surely there must be more to it than design details of generators and
motors! Indeed there is. There is an e®ect of electromagnetism known as mutual induction, whereby
two or more coils of wire placed so that the changing magnetic ¯eld created by one induces a voltage
in the other. If we have two mutually inductive coils and we energize one coil with AC, we will
create an AC voltage in the other coil. When used as such, this device is known as a transformer:
Figure 1.4





As useful as transformers are, they only work with AC, not DC. Because the phenomenon of
mutual inductance relies on changing magnetic ¯elds, and direct current (DC) can only produce
steady magnetic ¯elds, transformers simply will not work with direct current. Of course, direct
current may be interrupted (pulsed) through the primary winding of a transformer to create a
changing magnetic ¯eld (as is done in automotive ignition systems to produce high-voltage spark
plug power from a low-voltage DC battery), but pulsed DC is not that di®erent from AC. Perhaps
more than any other reason, this is why AC ¯nds such widespread application in power systems.


 REVIEW:
  • DC stands for \Direct Current," meaning voltage or current that maintains constant polarity
or direction, respectively, over time.
  • AC stands for \Alternating Current," meaning voltage or current that changes polarity or
direction, respectively, over time.
  • AC electromechanical generators, known as alternators, are of simpler construction than DC
electromechanical generators.
  • AC and DC motor design follows respective generator design principles very closely.
  •  A transformer is a pair of mutually-inductive coils used to convey AC power from one coil tothe other. Often, the number of turns in each coil is set to create a voltage increase or decrease
  • from the powered (primary) coil to the unpowered (secondary) coil.
  • Secondary voltage = Primary voltage (secondary turns / primary turns)
  • Secondary current = Primary current (primary turns / secondary turns)

No comments:

Post a Comment

Labels

PROJECTS 8086 PIN CONFIGURATION 80X86 PROCESSORS TRANSDUCERS 8086 – ARCHITECTURE Hall-Effect Transducers INTEL 8085 OPTICAL MATERIALS BIPOLAR TRANSISTORS INTEL 8255 Optoelectronic Devices Thermistors thevenin's theorem MAXIMUM MODE CONFIGURATION OF 8086 SYSTEM ASSEMBLY LANGUAGE PROGRAMME OF 80X86 PROCESSORS POWER PLANT ENGINEERING PRIME MOVERS 8279 with 8085 MINIMUM MODE CONFIGURATION OF 8086 SYSTEM MISCELLANEOUS DEVICES MODERN ENGINEERING MATERIALS 8085 Processor- Q and A-1 BASIC CONCEPTS OF FLUID MECHANICS OSCILLATORS 8085 Processor- Q and A-2 Features of 8086 PUMPS AND TURBINES 8031/8051 MICROCONTROLLER Chemfet Transducers DIODES FIRST LAW OF THERMODYNAMICS METHOD OF STATEMENTS 8279 with 8086 HIGH VOLTAGE ENGINEERING OVERVOLATGES AND INSULATION COORDINATION Thermocouples 8251A to 8086 ARCHITECTURE OF 8031/8051 Angle-Beam Transducers DATA TRANSFER INSTRUCTIONS IN 8051/8031 INSTRUCTION SET FOR 8051/8031 INTEL 8279 KEYBOARD AND DISPLAY INTERFACES USING 8279 LOGICAL INSTRUCTIONS FOR 8051/8031 Photonic Transducers TECHNOLOGICAL TIPS THREE POINT STARTER 8257 with 8085 ARITHMETIC INSTRUCTIONS IN 8051/8031 LIGHTNING PHENOMENA Photoelectric Detectors Physical Strain Gage Transducers 8259 PROCESSOR APPLICATIONS OF HALL EFFECT BRANCHING INSTRUCTIONS FOR 8051/8031 CPU OF 8031/8051 Capacitive Transducers DECODER Electromagnetic Transducer Hall voltage INTEL 8051 MICROCONTROLLER INTEL 8251A Insulation Resistance Test PINS AND SIGNALS OF 8031/8051 Physical Transducers Resistive Transducer STARTERS Thermocouple Vacuum Gages USART-INTEL 8251A APPLICATIONs OF 8085 MICROPROCESSOR CAPACITANCE Data Transfer Instructions In 8086 Processors EARTH FAULT RELAY ELECTRIC MOTORS ELECTRICAL AND ELECTRONIC INSTRUMENTS ELECTRICAL BREAKDOWN IN GASES FIELD EFFECT TRANSISTOR (FET) INTEL 8257 IONIZATION AND DECAY PROCESSES Inductive Transducers Microprocessor and Microcontroller OVER CURRENT RELAY OVER CURRENT RELAY TESTING METHODS PhotoConductive Detectors PhotoVoltaic Detectors Registers Of 8051/8031 Microcontroller Testing Methods ADC INTERFACE AMPLIFIERS APPLICATIONS OF 8259 EARTH ELECTRODE RESISTANCE MEASUREMENT TESTING METHODS EARTH FAULT RELAY TESTING METHODS Electricity Ferrodynamic Wattmeter Fiber-Optic Transducers IC TESTER IC TESTER part-2 INTERRUPTS Intravascular imaging transducer LIGHTNING ARRESTERS MEASUREMENT SYSTEM Mechanical imaging transducers Mesh Current-2 Millman's Theorem NEGATIVE FEEDBACK Norton's Polarity Test Potentiometric transducers Ratio Test SERIAL DATA COMMUNICATION SFR OF 8051/8031 SOLIDS AND LIQUIDS Speed Control System 8085 Stepper Motor Control System Winding Resistance Test 20 MVA 6-digits 6-digits 7-segment LEDs 7-segment A-to-D A/D ADC ADVANTAGES OF CORONA ALTERNATOR BY POTIER & ASA METHOD ANALOG TO DIGITAL CONVERTER AUXILIARY TRANSFORMER AUXILIARY TRANSFORMER TESTING AUXILIARY TRANSFORMER TESTING METHODS Analog Devices A–D BERNOULLI’S PRINCIPLE BUS BAR BUS BAR TESTING Basic measuring circuits Bernoulli's Equation Bit Manipulation Instruction Buchholz relay test CORONA POWER LOSS CURRENT TRANSFORMER CURRENT TRANSFORMER TESTING Contact resistance test Current to voltage converter DAC INTERFACE DESCRIBE MULTIPLY-EXCITED Digital Storage Oscilloscope Display Driver Circuit E PROMER ELPLUS NT-111 EPROM AND STATIC RAM EXCITED MAGNETIC FIELD Electrical Machines II- Exp NO.1 Energy Meters FACTORS AFFECTING CORONA FLIP FLOPS Fluid Dynamics and Bernoulli's Equation Fluorescence Chemical Transducers Foil Strain Gages HALL EFFECT HIGH VOLTAGE ENGG HV test HYSTERESIS MOTOR Hall co-efficient Hall voltage and Hall Co-efficient High Voltage Insulator Coating Hot-wire anemometer How to Read a Capacitor? IC TESTER part-1 INSTRUMENT TRANSFORMERS Importance of Hall Effect Insulation resistance check Insulator Coating Knee point Test LEDs LEDs Display Driver LEDs Display Driver Circuit LM35 LOGIC CONTROLLER LPT LPT PORT LPT PORT EXPANDER LPT PORT LPT PORT EXTENDER Life Gone? MAGNETIC FIELD MAGNETIC FIELD SYSTEMS METHOD OF STATEMENT FOR TRANSFORMER STABILITY TEST METHODS OF REDUCING CORONA EFFECT MULTIPLY-EXCITED MULTIPLY-EXCITED MAGNETIC FIELD SYSTEMS Mesh Current Mesh Current-1 Moving Iron Instruments Multiplexing Network Theorems Node Voltage Method On-No Load And On Load Condition PLC PORT EXTENDER POTIER & ASA METHOD POWER TRANSFORMER POWER TRANSFORMER TESTING POWER TRANSFORMER TESTING METHODS PROGRAMMABLE LOGIC PROGRAMMABLE LOGIC CONTROLLER Parallel Port EXPANDER Paschen's law Piezoelectric Wave-Propagation Transducers Potential Transformer RADIO INTERFERENCE RECTIFIERS REGULATION OF ALTERNATOR REGULATION OF THREE PHASE ALTERNATOR Read a Capacitor SINGLY-EXCITED SOLIDS AND LIQUIDS Classical gas laws Secondary effects Semiconductor strain gages Speaker Driver Strain Gages Streamer theory Superposition Superposition theorem Swinburne’s Test TMOD TRANSFORMER TESTING METHODS Tape Recorder Three-Phase Wattmeter Transformer Tap Changer Transformer Testing Vector group test Virus Activity Voltage Insulator Coating Voltage To Frequency Converter Voltage to current converter What is analog-to-digital conversion Windows work for Nokia capacitor labels excitation current test magnetic balance voltage to frequency converter wiki electronic frequency converter testing voltage with a multimeter 50 hz voltages voltmeter

Search More Posts

Followers