Electrical and Electronics Engineering Portal!
SUMPNER’S TEST
Load Test helps to determine the total loss that takes place, when the transformer is loaded. Unlike the tests described previously, in the present case nominal voltage is applied across the primary and rated current is drown from the secondary. Load test is used mainly
1. To determine the rated load of the machine and the temperature rise
2. To determine the voltage regulation and efficiency of the transformer. Rated load is determined by loading the transformer on a continuous basis and observing the steady state temperature rise. The losses that are generated inside the transformer on load appear as heat. This heats the transformer and the temperature of the transformer increases. The insulation of the transformer is the one to get affected by this rise in the temperature. Both paper and oil which are used for insulation in the transformer start getting degenerated and get decomposed. If the flash point of the oil is reached the transformer goes up in fames. Hence to have a reasonable life expectancy the loading of the transformer must be limited to that value which gives the maximum temperature rise tolerated by the insulation. This aspect of temperature rise cannot be guessed from the electrical equivalent circuit. Further, the losses like dielectric losses and stray load losses are not modeled in the equivalent circuit and the actual loss under load condition will be in error to that extent. Many external means of removal of heat from the transformer in different cooling methods give rise to different values for temperature rise of insulation. Hence these permit different levels of loading for the same transformer. Hence the only sure way of ascertaining the rating is by conducting a load test.
It is rather easy to load a transformer of small ratings. As the rating increases it becomes difficult to find a load that can absorb the requisite power and a source to feed the necessary current. As the transformers come in varied transformation ratios, in many cases it becomes extremely difficult to get suitable load impedance.
Further, the temperature rise of the transformer is due to the losses that take place `inside' the transformer.
The efficiency of the transformer is above 99% even in modest sizes which means 1 percent of power handled by the transformer actually goes to heat up the machine. The remaining 99% of the power has to be dissipated in load impedance external to the machine. This is very wasteful in terms of energy also. ( If the load is of unity power factor) methods of loading and `Phantom' loading are commonly used in the case of transformers. The load is applied and held constant till the temperature rise of transformer reaches a steady value. If the final steady temperature rise is lower than the maximum permissible value, then load can be increased else it is decreased. That load current which gives the maximum permissible temperature rise is declared as the nominal or rated load current and the volt amperes are computed using the same.
In the equivalent loss method a short circuit test is done on the transformer. The short circuit current is so chosen that the resulting loss taking place inside the transformer is equivalent to the sum of the iron losses, full load copper losses and assumed stray load losses. By this method even though one can pump in equivalent loss inside the transformer, the actual distribution of this loss vastly differs from that taking place in reality. Therefore this test comes close to a load test but does not replace one.
In Phantom loading method two identical transformers are needed. The windings
are connected back to back as shown in Fig. 22. Suitable voltage is injected into the loop formed by the two secondaries such that full load current passes through them. An equivalent current then passes through the primary also. The voltage source V1 supplies the magnetizing current and core losses for the two transformers. The second source supplies the load component of the current and losses due to the same. There is no power wasted in a load ( as a matter of fact there is no real load at all) and hence the name Phantom or virtual loading. The power absorbed by the second transformer which acts as a load is pushed back in to the mains. The two sources put together meet the core and copper losses of the two transformers. The transformers work with full flux drawing full load currents and hence are closest to the actual loading condition with a physical load.
Subscribe to:
Post Comments (Atom)
Labels
PROJECTS
8086 PIN CONFIGURATION
80X86 PROCESSORS
TRANSDUCERS
8086 – ARCHITECTURE
Hall-Effect Transducers
INTEL 8085
OPTICAL MATERIALS
BIPOLAR TRANSISTORS
INTEL 8255
Optoelectronic Devices
Thermistors
thevenin's theorem
MAXIMUM MODE CONFIGURATION OF 8086 SYSTEM
ASSEMBLY LANGUAGE PROGRAMME OF 80X86 PROCESSORS
POWER PLANT ENGINEERING
PRIME MOVERS
8279 with 8085
MINIMUM MODE CONFIGURATION OF 8086 SYSTEM
MISCELLANEOUS DEVICES
MODERN ENGINEERING MATERIALS
8085 Processor- Q and A-1
BASIC CONCEPTS OF FLUID MECHANICS
OSCILLATORS
8085 Processor- Q and A-2
Features of 8086
PUMPS AND TURBINES
8031/8051 MICROCONTROLLER
Chemfet Transducers
DIODES
FIRST LAW OF THERMODYNAMICS
METHOD OF STATEMENTS
8279 with 8086
HIGH VOLTAGE ENGINEERING
OVERVOLATGES AND INSULATION COORDINATION
Thermocouples
8251A to 8086
ARCHITECTURE OF 8031/8051
Angle-Beam Transducers
DATA TRANSFER INSTRUCTIONS IN 8051/8031
INSTRUCTION SET FOR 8051/8031
INTEL 8279
KEYBOARD AND DISPLAY INTERFACES USING 8279
LOGICAL INSTRUCTIONS FOR 8051/8031
Photonic Transducers
TECHNOLOGICAL TIPS
THREE POINT STARTER
8257 with 8085
ARITHMETIC INSTRUCTIONS IN 8051/8031
LIGHTNING PHENOMENA
Photoelectric Detectors
Physical Strain Gage Transducers
8259 PROCESSOR
APPLICATIONS OF HALL EFFECT
BRANCHING INSTRUCTIONS FOR 8051/8031
CPU OF 8031/8051
Capacitive Transducers
DECODER
Electromagnetic Transducer
Hall voltage
INTEL 8051 MICROCONTROLLER
INTEL 8251A
Insulation Resistance Test
PINS AND SIGNALS OF 8031/8051
Physical Transducers
Resistive Transducer
STARTERS
Thermocouple Vacuum Gages
USART-INTEL 8251A
APPLICATIONs OF 8085 MICROPROCESSOR
CAPACITANCE
Data Transfer Instructions In 8086 Processors
EARTH FAULT RELAY
ELECTRIC MOTORS
ELECTRICAL AND ELECTRONIC INSTRUMENTS
ELECTRICAL BREAKDOWN IN GASES
FIELD EFFECT TRANSISTOR (FET)
INTEL 8257
IONIZATION AND DECAY PROCESSES
Inductive Transducers
Microprocessor and Microcontroller
OVER CURRENT RELAY
OVER CURRENT RELAY TESTING METHODS
PhotoConductive Detectors
PhotoVoltaic Detectors
Registers Of 8051/8031 Microcontroller
Testing Methods
ADC INTERFACE
AMPLIFIERS
APPLICATIONS OF 8259
EARTH ELECTRODE RESISTANCE MEASUREMENT TESTING METHODS
EARTH FAULT RELAY TESTING METHODS
Electricity
Ferrodynamic Wattmeter
Fiber-Optic Transducers
IC TESTER
IC TESTER part-2
INTERRUPTS
Intravascular imaging transducer
LIGHTNING ARRESTERS
MEASUREMENT SYSTEM
Mechanical imaging transducers
Mesh Current-2
Millman's Theorem
NEGATIVE FEEDBACK
Norton's
Polarity Test
Potentiometric transducers
Ratio Test
SERIAL DATA COMMUNICATION
SFR OF 8051/8031
SOLIDS AND LIQUIDS
Speed Control System 8085
Stepper Motor Control System
Winding Resistance Test
20 MVA
6-digits
6-digits 7-segment LEDs
7-segment
A-to-D
A/D
ADC
ADVANTAGES OF CORONA
ALTERNATOR BY POTIER & ASA METHOD
ANALOG TO DIGITAL CONVERTER
AUXILIARY TRANSFORMER
AUXILIARY TRANSFORMER TESTING
AUXILIARY TRANSFORMER TESTING METHODS
Analog Devices
A–D
BERNOULLI’S PRINCIPLE
BUS BAR
BUS BAR TESTING
Basic measuring circuits
Bernoulli's Equation
Bit Manipulation Instruction
Buchholz relay test
CORONA POWER LOSS
CURRENT TRANSFORMER
CURRENT TRANSFORMER TESTING
Contact resistance test
Current to voltage converter
DAC INTERFACE
DESCRIBE MULTIPLY-EXCITED
Digital Storage Oscilloscope
Display Driver Circuit
E PROMER
ELPLUS NT-111
EPROM AND STATIC RAM
EXCITED MAGNETIC FIELD
Electrical Machines II- Exp NO.1
Energy Meters
FACTORS AFFECTING CORONA
FLIP FLOPS
Fluid Dynamics and Bernoulli's Equation
Fluorescence Chemical Transducers
Foil Strain Gages
HALL EFFECT
HIGH VOLTAGE ENGG
HV test
HYSTERESIS MOTOR
Hall co-efficient
Hall voltage and Hall Co-efficient
High Voltage Insulator Coating
Hot-wire anemometer
How to Read a Capacitor?
IC TESTER part-1
INSTRUMENT TRANSFORMERS
Importance of Hall Effect
Insulation resistance check
Insulator Coating
Knee point Test
LEDs
LEDs Display Driver
LEDs Display Driver Circuit
LM35
LOGIC CONTROLLER
LPT
LPT PORT
LPT PORT EXPANDER
LPT PORT
LPT PORT EXTENDER
Life Gone?
MAGNETIC FIELD
MAGNETIC FIELD SYSTEMS
METHOD OF STATEMENT FOR TRANSFORMER STABILITY TEST
METHODS OF REDUCING CORONA EFFECT
MULTIPLY-EXCITED
MULTIPLY-EXCITED MAGNETIC FIELD SYSTEMS
Mesh Current
Mesh Current-1
Moving Iron Instruments
Multiplexing
Network Theorems
Node Voltage Method
On-No Load And On Load Condition
PLC
PORT EXTENDER
POTIER & ASA METHOD
POWER TRANSFORMER
POWER TRANSFORMER TESTING
POWER TRANSFORMER TESTING METHODS
PROGRAMMABLE LOGIC
PROGRAMMABLE LOGIC CONTROLLER
Parallel Port EXPANDER
Paschen's law
Piezoelectric Wave-Propagation Transducers
Potential Transformer
RADIO INTERFERENCE
RECTIFIERS
REGULATION OF ALTERNATOR
REGULATION OF THREE PHASE ALTERNATOR
Read a Capacitor
SINGLY-EXCITED
SOLIDS AND LIQUIDS Classical gas laws
Secondary effects
Semiconductor strain gages
Speaker Driver
Strain Gages
Streamer theory
Superposition
Superposition theorem
Swinburne’s Test
TMOD
TRANSFORMER TESTING METHODS
Tape Recorder
Three-Phase Wattmeter
Transformer Tap Changer
Transformer Testing
Vector group test
Virus Activity
Voltage Insulator Coating
Voltage To Frequency Converter
Voltage to current converter
What is analog-to-digital conversion
Windows work for Nokia
capacitor labels
excitation current test
magnetic balance
voltage to frequency converter wiki electronic frequency converter testing voltage with a multimeter 50 hz voltages voltmeter
.
ReplyDelete