Regenerative Braking & Plugging Of DC Machines,Series Motors,Compound Motors

In regenerative braking as the name suggests the energy recovered from the rotating masses is fed back into the d.c. power source. Thus this type of braking improves the energy efficiency of the machine. The armature current can be made to reverse for a constant voltage operation by increase in speed/excitation only. Increase in speed does not result in braking and the increase in excitation is feasible only over a small range, which may be of the order of 10 to 15%. Hence the best method for obtaining the regenerative braking is to operate, the machine on a variable voltage supply. As the voltage is continuously pulled below the value of the induced emf the speed steadily comes down. The field current is held constant by means of separate excitation. The variable d.c. supply voltage can be obtained by Ward-Leonard arrangement, shown schematically in Fig. 51.

Braking torque can be obtained right up to zero speed. In modern times static Ward-Leonard scheme is used for getting the variable d.c. voltage. This has many advantages over its rotating machine counter part. Static sets compact, has higher efficiency, and requires lesser space and silent in operation; however it suffers from drawbacks like large ripple at low voltage levels, unidirectional power flow and low over load capacity. Bidirectional power   flow capacity is a must if regenerative braking is required. Series motors cannot be regeneratively   braked as the characteristics do not extend to the second quadrant.


The third method for braking is by plugging. Fig. 52 shows the method of connection for the plugging of a shunt motor. Initially the machine is connected to the supply with the switch S in position number 1. If now the switch is moved to position 2, then a reverse voltage is applied across the armature. The induced armature voltage E and supply voltage V aid each other and large reverse current flows through the armature. This produces a large negative torque or braking torque. Hence plugging is also termed as reverse voltage braking. The machine instantly comes to rest. If the motor is not switched off at this instant the direction of rotation reverses and the motor starts rotating the reverse direction. This type of braking therefore has two modes viz.

1) plug to reverse and 
2) plug to stop.

If we need the plugging only for bringing the speed to zero, then we have to open the switch S at zero speed. If nothing is done it is plug to reverse mode. Plugging is a convenient mode for quick reversal of direction of rotation in reversible drives. Just as in starting, during  Plugging also it is necessary to limit the current and thus the torque, to reduce the stress on the mechanical system and the commutator. This is done by adding additional resistance in series with the armature during plugging.

Series motors

In the case of series motors plugging cannot be employed as the field current too gets reversed when reverse voltage is applied across the machine. This keeps the direction of the torque produced unchanged. This fact is used with advantage, in operating a d.c. series motor on d.c. or a.c. supply. Series motors thus qualify to be called as `Universal motors'.

 Compound motors

Plugging of compound motors proceeds on similar lines as the shunt motors. However some precautions have to be observed due to the presence of series field winding. A Cumulatively compounded motor becomes differentially compounded on plugging. The mmf due to the series field can 'over power' the shunt field forcing the flux to low values or even reverse the net field. This decreases the braking torque, and increases the duration of the large braking current. To avoid this it may be advisable to deactivate the series field at the time of braking by short circuiting the same. In such cases the braking proceeds just as in a shunt motor. If plugging is done to operate the motoring the negative direction of rotation as well, then the series field has to be reversed and connected for getting the proper mmf. Unlike dynamic braking and regenerative braking where the motor is made to work as a generator during braking period, plugging makes the motor work on reverse motoring mode.

No comments:

Post a Comment


PROJECTS 8086 PIN CONFIGURATION 80X86 PROCESSORS TRANSDUCERS 8086 – ARCHITECTURE Hall-Effect Transducers INTEL 8085 OPTICAL MATERIALS BIPOLAR TRANSISTORS INTEL 8255 Optoelectronic Devices Thermistors thevenin's theorem MAXIMUM MODE CONFIGURATION OF 8086 SYSTEM ASSEMBLY LANGUAGE PROGRAMME OF 80X86 PROCESSORS POWER PLANT ENGINEERING PRIME MOVERS 8279 with 8085 MINIMUM MODE CONFIGURATION OF 8086 SYSTEM MISCELLANEOUS DEVICES MODERN ENGINEERING MATERIALS 8085 Processor- Q and A-1 BASIC CONCEPTS OF FLUID MECHANICS OSCILLATORS 8085 Processor- Q and A-2 Features of 8086 PUMPS AND TURBINES 8031/8051 MICROCONTROLLER Chemfet Transducers DIODES FIRST LAW OF THERMODYNAMICS METHOD OF STATEMENTS 8279 with 8086 HIGH VOLTAGE ENGINEERING OVERVOLATGES AND INSULATION COORDINATION Thermocouples 8251A to 8086 ARCHITECTURE OF 8031/8051 Angle-Beam Transducers DATA TRANSFER INSTRUCTIONS IN 8051/8031 INSTRUCTION SET FOR 8051/8031 INTEL 8279 KEYBOARD AND DISPLAY INTERFACES USING 8279 LOGICAL INSTRUCTIONS FOR 8051/8031 Photonic Transducers TECHNOLOGICAL TIPS THREE POINT STARTER 8257 with 8085 ARITHMETIC INSTRUCTIONS IN 8051/8031 LIGHTNING PHENOMENA Photoelectric Detectors Physical Strain Gage Transducers 8259 PROCESSOR APPLICATIONS OF HALL EFFECT BRANCHING INSTRUCTIONS FOR 8051/8031 CPU OF 8031/8051 Capacitive Transducers DECODER Electromagnetic Transducer Hall voltage INTEL 8051 MICROCONTROLLER INTEL 8251A Insulation Resistance Test PINS AND SIGNALS OF 8031/8051 Physical Transducers Resistive Transducer STARTERS Thermocouple Vacuum Gages USART-INTEL 8251A APPLICATIONs OF 8085 MICROPROCESSOR CAPACITANCE Data Transfer Instructions In 8086 Processors EARTH FAULT RELAY ELECTRIC MOTORS ELECTRICAL AND ELECTRONIC INSTRUMENTS ELECTRICAL BREAKDOWN IN GASES FIELD EFFECT TRANSISTOR (FET) INTEL 8257 IONIZATION AND DECAY PROCESSES Inductive Transducers Microprocessor and Microcontroller OVER CURRENT RELAY OVER CURRENT RELAY TESTING METHODS PhotoConductive Detectors PhotoVoltaic Detectors Registers Of 8051/8031 Microcontroller Testing Methods ADC INTERFACE AMPLIFIERS APPLICATIONS OF 8259 EARTH ELECTRODE RESISTANCE MEASUREMENT TESTING METHODS EARTH FAULT RELAY TESTING METHODS Electricity Ferrodynamic Wattmeter Fiber-Optic Transducers IC TESTER IC TESTER part-2 INTERRUPTS Intravascular imaging transducer LIGHTNING ARRESTERS MEASUREMENT SYSTEM Mechanical imaging transducers Mesh Current-2 Millman's Theorem NEGATIVE FEEDBACK Norton's Polarity Test Potentiometric transducers Ratio Test SERIAL DATA COMMUNICATION SFR OF 8051/8031 SOLIDS AND LIQUIDS Speed Control System 8085 Stepper Motor Control System Winding Resistance Test 20 MVA 6-digits 6-digits 7-segment LEDs 7-segment A-to-D A/D ADC ADVANTAGES OF CORONA ALTERNATOR BY POTIER & ASA METHOD ANALOG TO DIGITAL CONVERTER AUXILIARY TRANSFORMER AUXILIARY TRANSFORMER TESTING AUXILIARY TRANSFORMER TESTING METHODS Analog Devices A–D BERNOULLI’S PRINCIPLE BUS BAR BUS BAR TESTING Basic measuring circuits Bernoulli's Equation Bit Manipulation Instruction Buchholz relay test CORONA POWER LOSS CURRENT TRANSFORMER CURRENT TRANSFORMER TESTING Contact resistance test Current to voltage converter DAC INTERFACE DESCRIBE MULTIPLY-EXCITED Digital Storage Oscilloscope Display Driver Circuit E PROMER ELPLUS NT-111 EPROM AND STATIC RAM EXCITED MAGNETIC FIELD Electrical Machines II- Exp NO.1 Energy Meters FACTORS AFFECTING CORONA FLIP FLOPS Fluid Dynamics and Bernoulli's Equation Fluorescence Chemical Transducers Foil Strain Gages HALL EFFECT HIGH VOLTAGE ENGG HV test HYSTERESIS MOTOR Hall co-efficient Hall voltage and Hall Co-efficient High Voltage Insulator Coating Hot-wire anemometer How to Read a Capacitor? IC TESTER part-1 INSTRUMENT TRANSFORMERS Importance of Hall Effect Insulation resistance check Insulator Coating Knee point Test LEDs LEDs Display Driver LEDs Display Driver Circuit LM35 LOGIC CONTROLLER LPT LPT PORT LPT PORT EXPANDER LPT PORT LPT PORT EXTENDER Life Gone? MAGNETIC FIELD MAGNETIC FIELD SYSTEMS METHOD OF STATEMENT FOR TRANSFORMER STABILITY TEST METHODS OF REDUCING CORONA EFFECT MULTIPLY-EXCITED MULTIPLY-EXCITED MAGNETIC FIELD SYSTEMS Mesh Current Mesh Current-1 Moving Iron Instruments Multiplexing Network Theorems Node Voltage Method On-No Load And On Load Condition PLC PORT EXTENDER POTIER & ASA METHOD POWER TRANSFORMER POWER TRANSFORMER TESTING POWER TRANSFORMER TESTING METHODS PROGRAMMABLE LOGIC PROGRAMMABLE LOGIC CONTROLLER Parallel Port EXPANDER Paschen's law Piezoelectric Wave-Propagation Transducers Potential Transformer RADIO INTERFERENCE RECTIFIERS REGULATION OF ALTERNATOR REGULATION OF THREE PHASE ALTERNATOR Read a Capacitor SINGLY-EXCITED SOLIDS AND LIQUIDS Classical gas laws Secondary effects Semiconductor strain gages Speaker Driver Strain Gages Streamer theory Superposition Superposition theorem Swinburne’s Test TMOD TRANSFORMER TESTING METHODS Tape Recorder Three-Phase Wattmeter Transformer Tap Changer Transformer Testing Vector group test Virus Activity Voltage Insulator Coating Voltage To Frequency Converter Voltage to current converter What is analog-to-digital conversion Windows work for Nokia capacitor labels excitation current test magnetic balance voltage to frequency converter wiki electronic frequency converter testing voltage with a multimeter 50 hz voltages voltmeter

Search More Posts