Electrical and Electronics Engineering Portal!
Mesh Current Method Used To Determine Unknown Currents In a Network (Part-3)
In this equation, we represent the common directions of currents by their sums through common resistors. For example, resistor R3, with a value of 100 Ω, has its voltage drop represented in the above KVL equation by the expression 100(I1 + I2), since both currents I1 and I2 go through R3 from right to left. The same may be said for resistor R1, with its voltage drop expression shown as 150(I1 + I3), since both I1 and I3 go from bottom to top through that resistor, and thus work together to generate its voltage drop.
Generating a KVL equation for the bottom loop of the bridge will not be so easy, since we have two currents going against each other through resistor R4. Here is how I do it (starting at the right-hand node, and tracing counter-clockwise):
Note how the second term in the equation's original form has resistor R4's value of 300 Ω multiplied by the difference between I2 and I3 (I2 - I3). This is how we represent the combined effect of two mesh currents going in opposite directions through the same component. Choosing the appropriate mathematical signs is very important here: 300(I2 - I3) does not mean the same thing as 300(I3 - I2). I chose to write 300(I2 - I3) because I was thinking first of I2's effect (creating a positive voltage drop, measuring with an imaginary voltmeter across R4, red lead on the bottom and black lead on the top), and secondarily of I3's effect (creating a negative voltage drop, red lead on the bottom and black lead on the top). If I had thought in terms of I3's effect first and I2's effect secondarily, holding my imaginary voltmeter leads in the same positions (red on bottom and black on top), the expression would have been -300(I3 - I2). Note that this expression is mathematically equivalent to the first one: +300(I2 - I3).
Well, that takes care of two equations, but I still need a third equation to complete my simultaneous equation set of three variables, three equations. This third equation must also include the battery's voltage, which up to this point does not appear in either two of the previous KVL equations. To generate this equation, I will trace a loop again with my imaginary voltmeter starting from the battery's bottom (negative) terminal, stepping clockwise (again, the direction in which I step is arbitrary, and does not need to be the same as the direction of the mesh current in that loop):
Solving for I1, I2, and I3 using whatever simultaneous equation method we prefer:
REVIEW:
• Steps to follow for the “Mesh Current” method of analysis:
• (1) Draw mesh currents in loops of circuit, enough to account for all components.
• (2) Label resistor voltage drop polarities based on assumed directions of mesh currents.
• (3) Write KVL equations for each loop of the circuit, substituting the product IR for E in each resistor term of the equation. Where two mesh currents intersect through a component, express the current as the algebraic sum of those two mesh currents (i.e. I1 + I2) if the currents go in the same direction through that component. If not, express the current as the difference (i.e. I1 - I2).
• (4) Solve for unknown mesh currents (simultaneous equations).
• (5) If any solution is negative, then the assumed current direction is wrong!
• (6) Algebraically add mesh currents to find current in components sharing multiple mesh currents.
• (7) Solve for voltage drops across all resistors (E=IR).
Subscribe to:
Post Comments (Atom)
Labels
PROJECTS
8086 PIN CONFIGURATION
80X86 PROCESSORS
TRANSDUCERS
8086 – ARCHITECTURE
Hall-Effect Transducers
INTEL 8085
OPTICAL MATERIALS
BIPOLAR TRANSISTORS
INTEL 8255
Optoelectronic Devices
Thermistors
thevenin's theorem
MAXIMUM MODE CONFIGURATION OF 8086 SYSTEM
ASSEMBLY LANGUAGE PROGRAMME OF 80X86 PROCESSORS
POWER PLANT ENGINEERING
PRIME MOVERS
8279 with 8085
MINIMUM MODE CONFIGURATION OF 8086 SYSTEM
MISCELLANEOUS DEVICES
MODERN ENGINEERING MATERIALS
8085 Processor- Q and A-1
BASIC CONCEPTS OF FLUID MECHANICS
OSCILLATORS
8085 Processor- Q and A-2
Features of 8086
PUMPS AND TURBINES
8031/8051 MICROCONTROLLER
Chemfet Transducers
DIODES
FIRST LAW OF THERMODYNAMICS
METHOD OF STATEMENTS
8279 with 8086
HIGH VOLTAGE ENGINEERING
OVERVOLATGES AND INSULATION COORDINATION
Thermocouples
8251A to 8086
ARCHITECTURE OF 8031/8051
Angle-Beam Transducers
DATA TRANSFER INSTRUCTIONS IN 8051/8031
INSTRUCTION SET FOR 8051/8031
INTEL 8279
KEYBOARD AND DISPLAY INTERFACES USING 8279
LOGICAL INSTRUCTIONS FOR 8051/8031
Photonic Transducers
TECHNOLOGICAL TIPS
THREE POINT STARTER
8257 with 8085
ARITHMETIC INSTRUCTIONS IN 8051/8031
LIGHTNING PHENOMENA
Photoelectric Detectors
Physical Strain Gage Transducers
8259 PROCESSOR
APPLICATIONS OF HALL EFFECT
BRANCHING INSTRUCTIONS FOR 8051/8031
CPU OF 8031/8051
Capacitive Transducers
DECODER
Electromagnetic Transducer
Hall voltage
INTEL 8051 MICROCONTROLLER
INTEL 8251A
Insulation Resistance Test
PINS AND SIGNALS OF 8031/8051
Physical Transducers
Resistive Transducer
STARTERS
Thermocouple Vacuum Gages
USART-INTEL 8251A
APPLICATIONs OF 8085 MICROPROCESSOR
CAPACITANCE
Data Transfer Instructions In 8086 Processors
EARTH FAULT RELAY
ELECTRIC MOTORS
ELECTRICAL AND ELECTRONIC INSTRUMENTS
ELECTRICAL BREAKDOWN IN GASES
FIELD EFFECT TRANSISTOR (FET)
INTEL 8257
IONIZATION AND DECAY PROCESSES
Inductive Transducers
Microprocessor and Microcontroller
OVER CURRENT RELAY
OVER CURRENT RELAY TESTING METHODS
PhotoConductive Detectors
PhotoVoltaic Detectors
Registers Of 8051/8031 Microcontroller
Testing Methods
ADC INTERFACE
AMPLIFIERS
APPLICATIONS OF 8259
EARTH ELECTRODE RESISTANCE MEASUREMENT TESTING METHODS
EARTH FAULT RELAY TESTING METHODS
Electricity
Ferrodynamic Wattmeter
Fiber-Optic Transducers
IC TESTER
IC TESTER part-2
INTERRUPTS
Intravascular imaging transducer
LIGHTNING ARRESTERS
MEASUREMENT SYSTEM
Mechanical imaging transducers
Mesh Current-2
Millman's Theorem
NEGATIVE FEEDBACK
Norton's
Polarity Test
Potentiometric transducers
Ratio Test
SERIAL DATA COMMUNICATION
SFR OF 8051/8031
SOLIDS AND LIQUIDS
Speed Control System 8085
Stepper Motor Control System
Winding Resistance Test
20 MVA
6-digits
6-digits 7-segment LEDs
7-segment
A-to-D
A/D
ADC
ADVANTAGES OF CORONA
ALTERNATOR BY POTIER & ASA METHOD
ANALOG TO DIGITAL CONVERTER
AUXILIARY TRANSFORMER
AUXILIARY TRANSFORMER TESTING
AUXILIARY TRANSFORMER TESTING METHODS
Analog Devices
A–D
BERNOULLI’S PRINCIPLE
BUS BAR
BUS BAR TESTING
Basic measuring circuits
Bernoulli's Equation
Bit Manipulation Instruction
Buchholz relay test
CORONA POWER LOSS
CURRENT TRANSFORMER
CURRENT TRANSFORMER TESTING
Contact resistance test
Current to voltage converter
DAC INTERFACE
DESCRIBE MULTIPLY-EXCITED
Digital Storage Oscilloscope
Display Driver Circuit
E PROMER
ELPLUS NT-111
EPROM AND STATIC RAM
EXCITED MAGNETIC FIELD
Electrical Machines II- Exp NO.1
Energy Meters
FACTORS AFFECTING CORONA
FLIP FLOPS
Fluid Dynamics and Bernoulli's Equation
Fluorescence Chemical Transducers
Foil Strain Gages
HALL EFFECT
HIGH VOLTAGE ENGG
HV test
HYSTERESIS MOTOR
Hall co-efficient
Hall voltage and Hall Co-efficient
High Voltage Insulator Coating
Hot-wire anemometer
How to Read a Capacitor?
IC TESTER part-1
INSTRUMENT TRANSFORMERS
Importance of Hall Effect
Insulation resistance check
Insulator Coating
Knee point Test
LEDs
LEDs Display Driver
LEDs Display Driver Circuit
LM35
LOGIC CONTROLLER
LPT
LPT PORT
LPT PORT EXPANDER
LPT PORT
LPT PORT EXTENDER
Life Gone?
MAGNETIC FIELD
MAGNETIC FIELD SYSTEMS
METHOD OF STATEMENT FOR TRANSFORMER STABILITY TEST
METHODS OF REDUCING CORONA EFFECT
MULTIPLY-EXCITED
MULTIPLY-EXCITED MAGNETIC FIELD SYSTEMS
Mesh Current
Mesh Current-1
Moving Iron Instruments
Multiplexing
Network Theorems
Node Voltage Method
On-No Load And On Load Condition
PLC
PORT EXTENDER
POTIER & ASA METHOD
POWER TRANSFORMER
POWER TRANSFORMER TESTING
POWER TRANSFORMER TESTING METHODS
PROGRAMMABLE LOGIC
PROGRAMMABLE LOGIC CONTROLLER
Parallel Port EXPANDER
Paschen's law
Piezoelectric Wave-Propagation Transducers
Potential Transformer
RADIO INTERFERENCE
RECTIFIERS
REGULATION OF ALTERNATOR
REGULATION OF THREE PHASE ALTERNATOR
Read a Capacitor
SINGLY-EXCITED
SOLIDS AND LIQUIDS Classical gas laws
Secondary effects
Semiconductor strain gages
Speaker Driver
Strain Gages
Streamer theory
Superposition
Superposition theorem
Swinburne’s Test
TMOD
TRANSFORMER TESTING METHODS
Tape Recorder
Three-Phase Wattmeter
Transformer Tap Changer
Transformer Testing
Vector group test
Virus Activity
Voltage Insulator Coating
Voltage To Frequency Converter
Voltage to current converter
What is analog-to-digital conversion
Windows work for Nokia
capacitor labels
excitation current test
magnetic balance
voltage to frequency converter wiki electronic frequency converter testing voltage with a multimeter 50 hz voltages voltmeter
No comments:
Post a Comment