Permanent Magnet Moving Coil Instrument (PMMC)




The permanent magnet moving coil instrument is the most accurate type for D.C. Measurements. The working principle of these instruments is the same as that of the d’Arsonval type of galvanometers, the difference being that a direct reading instrument is provided with a pointer and a scale

(Fig) Permanent magnet moving coil instrument

Construction of PMMC Instruments


  •     The constructional features of this instrument are shown in Fig.
  •     The moving coil is wound with many turns of enameled or silk covered copper wire.
  •     The coil is mounted on rectangular aluminum former, which is pivoted on jeweled bearings.
  •     The coils move freely in the field of a permanent magnet.
  •     Most voltmeter coils are wound on metal frames to provide the required electro-magnetic damping.
  •     Most ammeter coils, however, are wound on non-magnetic formers, because coil turns are effectively shorted by the ammeter shunt.
  •     The coil itself, therefore, provides electro magnetic damping.

Magnet Systems


  •     Old style magnet system consisted of relatively long U shaped permanent magnets having soft iron pole pieces.
  •     Owing to development of materials like Alcomax and Alnico, which have a high co-ercive force, it is possible to use smaller magnet lengths and high field intensities.
  •     The flux densities used in PMIMC instruments vary from 0.1 Wb/m to 1 Wb/m.

Control

  •     When the coil is supported between two jewel bearings two phosphor bronze hairsprings provide the control torque.
  •     These springs also serve to lead current in and out of the coil. The control torque is provided by the ribbon suspension as shown.
  •     This method is comparatively new and is claimed to be advantageous as it eliminates bearing friction.

Damping

  •     Damping torque is produced by movement of the aluminium former moving in the magnetic field of the permanent magnet.

Pointer and Scale

  •     The pointer is carried by the spindle and moves over a graduated scale.
  •     The pointer is of lightweight construction and, apart from those used in some inexpensive instruments has the section over the scale twisted to form a fine blade.
  •      This helps to reduce parallax errors in the reading of the scale. When the coil is supported between two jewel bearings two phosphor bronze hairsprings provide the control torque.
  •     These springs also serve to lead current in and out of the coil.

Torque Equation.


The torque equation of a moving coil instrument is given by



As the deflection is directly proportional to the current passing through the meter (K and G being constants) we get a uniform (linear) scale for the instrument.

 Errors in PMMC Instruments

The main sources of errors in moving coil instruments are due to

  •     Weakening of permanent magnets due to ageing at temperature effects.
  •     Weakening of springs due to ageing and temperature effects.
  •     Change of resistance of the moving coil with temperature.



Advantages and Disadvantages of PMMC Instruments


The main advantages of PMMC instruments are
  •     The scale is uniformly divided.
  •     The power consumption is very low
  •     The torque-weight ratio is high which gives a high accuracy. The accuracy is of the order of generally 2 percent of full-scale deflection.
  •     Using different values for shunts and multipliers may use a single instrument for many different current and voltage ranges.
  •     Since the operating forces are large on account of large flux densities, which may be as high as 0.5 Wb/m, the errors due to stray magnetic fields are small.
  •     Self-shielding magnets make the core magnet mechanism particularly useful in aircraft and aerospace applications.

The chief disadvantages are

  •     These instruments are useful only for D.C. The torque reverses if the current reverses. If the instrument is connected to a.c., the pointer cannot follow the rapid reversals and the deflection corresponds to mean torque, which is zero. Hence these instruments cannot be used for a.c.
  •     The cost of these instruments is higher than that of moving iron instruments.


2 comments:

Labels

PROJECTS 8086 PIN CONFIGURATION 80X86 PROCESSORS TRANSDUCERS 8086 – ARCHITECTURE Hall-Effect Transducers INTEL 8085 OPTICAL MATERIALS BIPOLAR TRANSISTORS INTEL 8255 Optoelectronic Devices Thermistors thevenin's theorem MAXIMUM MODE CONFIGURATION OF 8086 SYSTEM ASSEMBLY LANGUAGE PROGRAMME OF 80X86 PROCESSORS POWER PLANT ENGINEERING PRIME MOVERS 8279 with 8085 MINIMUM MODE CONFIGURATION OF 8086 SYSTEM MISCELLANEOUS DEVICES MODERN ENGINEERING MATERIALS 8085 Processor- Q and A-1 BASIC CONCEPTS OF FLUID MECHANICS OSCILLATORS 8085 Processor- Q and A-2 Features of 8086 PUMPS AND TURBINES 8031/8051 MICROCONTROLLER Chemfet Transducers DIODES FIRST LAW OF THERMODYNAMICS METHOD OF STATEMENTS 8279 with 8086 HIGH VOLTAGE ENGINEERING OVERVOLATGES AND INSULATION COORDINATION Thermocouples 8251A to 8086 ARCHITECTURE OF 8031/8051 Angle-Beam Transducers DATA TRANSFER INSTRUCTIONS IN 8051/8031 INSTRUCTION SET FOR 8051/8031 INTEL 8279 KEYBOARD AND DISPLAY INTERFACES USING 8279 LOGICAL INSTRUCTIONS FOR 8051/8031 Photonic Transducers TECHNOLOGICAL TIPS THREE POINT STARTER 8257 with 8085 ARITHMETIC INSTRUCTIONS IN 8051/8031 LIGHTNING PHENOMENA Photoelectric Detectors Physical Strain Gage Transducers 8259 PROCESSOR APPLICATIONS OF HALL EFFECT BRANCHING INSTRUCTIONS FOR 8051/8031 CPU OF 8031/8051 Capacitive Transducers DECODER Electromagnetic Transducer Hall voltage INTEL 8051 MICROCONTROLLER INTEL 8251A Insulation Resistance Test PINS AND SIGNALS OF 8031/8051 Physical Transducers Resistive Transducer STARTERS Thermocouple Vacuum Gages USART-INTEL 8251A APPLICATIONs OF 8085 MICROPROCESSOR CAPACITANCE Data Transfer Instructions In 8086 Processors EARTH FAULT RELAY ELECTRIC MOTORS ELECTRICAL AND ELECTRONIC INSTRUMENTS ELECTRICAL BREAKDOWN IN GASES FIELD EFFECT TRANSISTOR (FET) INTEL 8257 IONIZATION AND DECAY PROCESSES Inductive Transducers Microprocessor and Microcontroller OVER CURRENT RELAY OVER CURRENT RELAY TESTING METHODS PhotoConductive Detectors PhotoVoltaic Detectors Registers Of 8051/8031 Microcontroller Testing Methods ADC INTERFACE AMPLIFIERS APPLICATIONS OF 8259 EARTH ELECTRODE RESISTANCE MEASUREMENT TESTING METHODS EARTH FAULT RELAY TESTING METHODS Electricity Ferrodynamic Wattmeter Fiber-Optic Transducers IC TESTER IC TESTER part-2 INTERRUPTS Intravascular imaging transducer LIGHTNING ARRESTERS MEASUREMENT SYSTEM Mechanical imaging transducers Mesh Current-2 Millman's Theorem NEGATIVE FEEDBACK Norton's Polarity Test Potentiometric transducers Ratio Test SERIAL DATA COMMUNICATION SFR OF 8051/8031 SOLIDS AND LIQUIDS Speed Control System 8085 Stepper Motor Control System Winding Resistance Test 20 MVA 6-digits 6-digits 7-segment LEDs 7-segment A-to-D A/D ADC ADVANTAGES OF CORONA ALTERNATOR BY POTIER & ASA METHOD ANALOG TO DIGITAL CONVERTER AUXILIARY TRANSFORMER AUXILIARY TRANSFORMER TESTING AUXILIARY TRANSFORMER TESTING METHODS Analog Devices A–D BERNOULLI’S PRINCIPLE BUS BAR BUS BAR TESTING Basic measuring circuits Bernoulli's Equation Bit Manipulation Instruction Buchholz relay test CORONA POWER LOSS CURRENT TRANSFORMER CURRENT TRANSFORMER TESTING Contact resistance test Current to voltage converter DAC INTERFACE DESCRIBE MULTIPLY-EXCITED Digital Storage Oscilloscope Display Driver Circuit E PROMER ELPLUS NT-111 EPROM AND STATIC RAM EXCITED MAGNETIC FIELD Electrical Machines II- Exp NO.1 Energy Meters FACTORS AFFECTING CORONA FLIP FLOPS Fluid Dynamics and Bernoulli's Equation Fluorescence Chemical Transducers Foil Strain Gages HALL EFFECT HIGH VOLTAGE ENGG HV test HYSTERESIS MOTOR Hall co-efficient Hall voltage and Hall Co-efficient High Voltage Insulator Coating Hot-wire anemometer How to Read a Capacitor? IC TESTER part-1 INSTRUMENT TRANSFORMERS Importance of Hall Effect Insulation resistance check Insulator Coating Knee point Test LEDs LEDs Display Driver LEDs Display Driver Circuit LM35 LOGIC CONTROLLER LPT LPT PORT LPT PORT EXPANDER LPT PORT LPT PORT EXTENDER Life Gone? MAGNETIC FIELD MAGNETIC FIELD SYSTEMS METHOD OF STATEMENT FOR TRANSFORMER STABILITY TEST METHODS OF REDUCING CORONA EFFECT MULTIPLY-EXCITED MULTIPLY-EXCITED MAGNETIC FIELD SYSTEMS Mesh Current Mesh Current-1 Moving Iron Instruments Multiplexing Network Theorems Node Voltage Method On-No Load And On Load Condition PLC PORT EXTENDER POTIER & ASA METHOD POWER TRANSFORMER POWER TRANSFORMER TESTING POWER TRANSFORMER TESTING METHODS PROGRAMMABLE LOGIC PROGRAMMABLE LOGIC CONTROLLER Parallel Port EXPANDER Paschen's law Piezoelectric Wave-Propagation Transducers Potential Transformer RADIO INTERFERENCE RECTIFIERS REGULATION OF ALTERNATOR REGULATION OF THREE PHASE ALTERNATOR Read a Capacitor SINGLY-EXCITED SOLIDS AND LIQUIDS Classical gas laws Secondary effects Semiconductor strain gages Speaker Driver Strain Gages Streamer theory Superposition Superposition theorem Swinburne’s Test TMOD TRANSFORMER TESTING METHODS Tape Recorder Three-Phase Wattmeter Transformer Tap Changer Transformer Testing Vector group test Virus Activity Voltage Insulator Coating Voltage To Frequency Converter Voltage to current converter What is analog-to-digital conversion Windows work for Nokia capacitor labels excitation current test magnetic balance voltage to frequency converter wiki electronic frequency converter testing voltage with a multimeter 50 hz voltages voltmeter

Search More Posts

Followers