Internet Protocol infiltrates low-power machine-to-machine networks

The 6LoWPAN work is opening low-power wireless networks to IP traffic, with interesting consequences.


By Ron Wilson, Editorial director -- EDN, May 12, 2011

One of the significant trends in embedded-systems networking has been the "Internet of Things." The name grandly suggests some new incarnation of the Web just for robots, but the reality is more prosaic. Developers of machine-to-machine (M-to-M) networks are adopting Internet Protocol (IP)-generally IPv6-and grafting its rather formidable protocol stack onto their existing networking software.

The main reason for this trend is convenience. Third-party IP stacks and offload engines are widely available. Increasingly, IP is the lingua Franca one can expect a third-party embedded device to understand. And, as Dust Networks President and CEO Joy Weiss pointed out recently, an IP stack allows application-layer developers to write to a single network interface, independent of the physical-layer implementation and the network topology. All the world becomes just a set of IP addresses.


But an IP network has its costs. In an embedded world used to thin clients, light-weight protocols, and MCUs with little spare memory, an IPv6 stack can force replanning of the hardware resources, to say the least. The IP world-view--in which time is but a social convention and best-effort is the best you can get-is entirely foreign to the embedded world of fault-tolerant, isochronous networks and guaranteed maximum latencies. And the next logical step-actually connecting the local M-to-M network to the big, bad Internet, is fraught with uncertainties and security risks.

Dust Networks makes an interesting case study in this clash of cultures. The company has made its name selling wireless M-to-M networks in the industrial market-more than 10,000 to date, according to Weiss. Dust uses a radical, dynamically self-configuring, quasi-peer network architecture running the IEEE 802.15.4 protocol. Employing proprietary time-domain multiple-access on top of the IEEE standard and supporting wHARP (wireless Hybrid Ad-hoc Routing Protocol), Dust uses a low-frequency heart-beat with very short wake and sleep latencies to minimize the radio duty cycle, making possible single-chip nodes that can operate even on scavenged energy. In short, Dust's culture is nearly antithetical to the world of IP.


But with the introduction of SmarMesh IP on Wednesday, Dust is plunging into the IP world, supporting Internet packet traffic over its mesh network. The product rests on adding to Dust's existing node functions a speculative implementation of the specification from the IETF 6LoWPAN (IPv6 over Low-power Wireless Personal-Area Networks) working group. The specification deals specifically with carrying IPv6 traffic over 802.15.4 networks.

Support for 6LoWPAN, in turn, required Dust to increase the processing and memory headroom on their silicon, a need that ARM thoughtfully answered with the introduction of the Cortex M3 core. In the inherently low-leakage TSMC 180-nm analog process Dust combined their high-efficiency radio with a heavily power-managed Cortex M3 implementation, up to 72 kBytes of RAM, and 512 kBytes of flash. The result is an SOC that works in Dust's network, meets the company's stringent energy-consumption goals, and transports IPv6 packets.

The question of Internet security is a more complex one. Weiss said that there is an authentication protocol baked into the Dust network, preventing an unauthorized device from associating itself with the network. But Internet-connected embedded systems will also depend on a powerful firewall-outside the scope of Dust's product line-to protect the local zone from the outside world.

Another addition to the new SOC, incidentally, is a time-of-flight engine: essentially a precision timer for measuring propagation delays between nodes. Using the measured delays and a table of locations of fixed nodes in the mesh, a mobile node can locate itself within about 3 meters, Weiss said.

As the 6LoWPAN group's work moves toward a draft standard, expect the spec to become a vehicle for increasing IPv6 penetration into M-to-M networks. Other companies in the low-power wireless space, including Jennic and Energy Micro, are likely to be active early on. Jennic has already announced 6LoWPAN software, and Energy Micro, with its extreme focus on energy management, involvement in the 802.15.4 standard effort, and Cortex M3 implementation, seems likely to be involved, as well.

In addition to meeting a need that these vendors are hearing from systems developers, IPv6 support may open a wider market to companies like Dust that have been primarily focused on industrial applications. Building management, home control, and everyone's current pot of gold, the Smart Grid, are all likely to be biased toward IPv6. So 6LoWPAN might not only open a far more energy-efficient class of networks to IP traffic. It may also open a new set of markets to previously industrially focused vendors.
RSS
Reprints/License
Print
Email
Talkback

No comments:

Post a Comment

Labels

PROJECTS 8086 PIN CONFIGURATION 80X86 PROCESSORS TRANSDUCERS 8086 – ARCHITECTURE Hall-Effect Transducers INTEL 8085 OPTICAL MATERIALS BIPOLAR TRANSISTORS INTEL 8255 Optoelectronic Devices Thermistors thevenin's theorem MAXIMUM MODE CONFIGURATION OF 8086 SYSTEM ASSEMBLY LANGUAGE PROGRAMME OF 80X86 PROCESSORS POWER PLANT ENGINEERING PRIME MOVERS 8279 with 8085 MINIMUM MODE CONFIGURATION OF 8086 SYSTEM MISCELLANEOUS DEVICES MODERN ENGINEERING MATERIALS 8085 Processor- Q and A-1 BASIC CONCEPTS OF FLUID MECHANICS OSCILLATORS 8085 Processor- Q and A-2 Features of 8086 PUMPS AND TURBINES 8031/8051 MICROCONTROLLER Chemfet Transducers DIODES FIRST LAW OF THERMODYNAMICS METHOD OF STATEMENTS 8279 with 8086 HIGH VOLTAGE ENGINEERING OVERVOLATGES AND INSULATION COORDINATION Thermocouples 8251A to 8086 ARCHITECTURE OF 8031/8051 Angle-Beam Transducers DATA TRANSFER INSTRUCTIONS IN 8051/8031 INSTRUCTION SET FOR 8051/8031 INTEL 8279 KEYBOARD AND DISPLAY INTERFACES USING 8279 LOGICAL INSTRUCTIONS FOR 8051/8031 Photonic Transducers TECHNOLOGICAL TIPS THREE POINT STARTER 8257 with 8085 ARITHMETIC INSTRUCTIONS IN 8051/8031 LIGHTNING PHENOMENA Photoelectric Detectors Physical Strain Gage Transducers 8259 PROCESSOR APPLICATIONS OF HALL EFFECT BRANCHING INSTRUCTIONS FOR 8051/8031 CPU OF 8031/8051 Capacitive Transducers DECODER Electromagnetic Transducer Hall voltage INTEL 8051 MICROCONTROLLER INTEL 8251A Insulation Resistance Test PINS AND SIGNALS OF 8031/8051 Physical Transducers Resistive Transducer STARTERS Thermocouple Vacuum Gages USART-INTEL 8251A APPLICATIONs OF 8085 MICROPROCESSOR CAPACITANCE Data Transfer Instructions In 8086 Processors EARTH FAULT RELAY ELECTRIC MOTORS ELECTRICAL AND ELECTRONIC INSTRUMENTS ELECTRICAL BREAKDOWN IN GASES FIELD EFFECT TRANSISTOR (FET) INTEL 8257 IONIZATION AND DECAY PROCESSES Inductive Transducers Microprocessor and Microcontroller OVER CURRENT RELAY OVER CURRENT RELAY TESTING METHODS PhotoConductive Detectors PhotoVoltaic Detectors Registers Of 8051/8031 Microcontroller Testing Methods ADC INTERFACE AMPLIFIERS APPLICATIONS OF 8259 EARTH ELECTRODE RESISTANCE MEASUREMENT TESTING METHODS EARTH FAULT RELAY TESTING METHODS Electricity Ferrodynamic Wattmeter Fiber-Optic Transducers IC TESTER IC TESTER part-2 INTERRUPTS Intravascular imaging transducer LIGHTNING ARRESTERS MEASUREMENT SYSTEM Mechanical imaging transducers Mesh Current-2 Millman's Theorem NEGATIVE FEEDBACK Norton's Polarity Test Potentiometric transducers Ratio Test SERIAL DATA COMMUNICATION SFR OF 8051/8031 SOLIDS AND LIQUIDS Speed Control System 8085 Stepper Motor Control System Winding Resistance Test 20 MVA 6-digits 6-digits 7-segment LEDs 7-segment A-to-D A/D ADC ADVANTAGES OF CORONA ALTERNATOR BY POTIER & ASA METHOD ANALOG TO DIGITAL CONVERTER AUXILIARY TRANSFORMER AUXILIARY TRANSFORMER TESTING AUXILIARY TRANSFORMER TESTING METHODS Analog Devices A–D BERNOULLI’S PRINCIPLE BUS BAR BUS BAR TESTING Basic measuring circuits Bernoulli's Equation Bit Manipulation Instruction Buchholz relay test CORONA POWER LOSS CURRENT TRANSFORMER CURRENT TRANSFORMER TESTING Contact resistance test Current to voltage converter DAC INTERFACE DESCRIBE MULTIPLY-EXCITED Digital Storage Oscilloscope Display Driver Circuit E PROMER ELPLUS NT-111 EPROM AND STATIC RAM EXCITED MAGNETIC FIELD Electrical Machines II- Exp NO.1 Energy Meters FACTORS AFFECTING CORONA FLIP FLOPS Fluid Dynamics and Bernoulli's Equation Fluorescence Chemical Transducers Foil Strain Gages HALL EFFECT HIGH VOLTAGE ENGG HV test HYSTERESIS MOTOR Hall co-efficient Hall voltage and Hall Co-efficient High Voltage Insulator Coating Hot-wire anemometer How to Read a Capacitor? IC TESTER part-1 INSTRUMENT TRANSFORMERS Importance of Hall Effect Insulation resistance check Insulator Coating Knee point Test LEDs LEDs Display Driver LEDs Display Driver Circuit LM35 LOGIC CONTROLLER LPT LPT PORT LPT PORT EXPANDER LPT PORT LPT PORT EXTENDER Life Gone? MAGNETIC FIELD MAGNETIC FIELD SYSTEMS METHOD OF STATEMENT FOR TRANSFORMER STABILITY TEST METHODS OF REDUCING CORONA EFFECT MULTIPLY-EXCITED MULTIPLY-EXCITED MAGNETIC FIELD SYSTEMS Mesh Current Mesh Current-1 Moving Iron Instruments Multiplexing Network Theorems Node Voltage Method On-No Load And On Load Condition PLC PORT EXTENDER POTIER & ASA METHOD POWER TRANSFORMER POWER TRANSFORMER TESTING POWER TRANSFORMER TESTING METHODS PROGRAMMABLE LOGIC PROGRAMMABLE LOGIC CONTROLLER Parallel Port EXPANDER Paschen's law Piezoelectric Wave-Propagation Transducers Potential Transformer RADIO INTERFERENCE RECTIFIERS REGULATION OF ALTERNATOR REGULATION OF THREE PHASE ALTERNATOR Read a Capacitor SINGLY-EXCITED SOLIDS AND LIQUIDS Classical gas laws Secondary effects Semiconductor strain gages Speaker Driver Strain Gages Streamer theory Superposition Superposition theorem Swinburne’s Test TMOD TRANSFORMER TESTING METHODS Tape Recorder Three-Phase Wattmeter Transformer Tap Changer Transformer Testing Vector group test Virus Activity Voltage Insulator Coating Voltage To Frequency Converter Voltage to current converter What is analog-to-digital conversion Windows work for Nokia capacitor labels excitation current test magnetic balance voltage to frequency converter wiki electronic frequency converter testing voltage with a multimeter 50 hz voltages voltmeter

Search More Posts

Followers